Digitally Tuned Low Power Gyroscope

Bernhard E. Boser & Chinwuba Ezekwe

Berkeley Sensor & Actuator Center Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley

Outline

- Objective:
 - 100x power reduction in MEMS gyroscope
- What are gyroscopes?
- Power reduction techniques
 - Mechanical gain
 - Low power, low noise amplification
- Results

Accelerometer

Vibratory Gyroscope

 Vibrate along drive axis with oscillator @ f_{drive}

 Detect vibration @ f_{drive} about sense axis with accelerometer

$$x \cong \frac{1}{4000}$$
 Angstrom

Gyroscope Design

Electrostatic Drive

Power / Accuracy Tradeoff

Design options:

Lower amplifier noise
 Increase signal ∆v

without power penalty

Outline

- Objective:
 - 100x power reduction in MEMS gyroscope
- What are gyroscopes?
- Power reduction techniques
 - Mechanical gain
 - Low power, low noise amplification
- Results

Mode-Matching

Frequency Error Estimation

Sense Resonance Estimation

force amplitude difference to zero

Electrostatic Tuning

Electrostatic Force Feedback

2-level feedback (Sampled Data " $\Sigma \Delta$ ")

Sensor Frequency Response

- Main mode near 15kHz
- Big parasitic modes near 95kHz and 300kHz
- Smaller parasitic modes all over
- Feedback?

Parasitic Resonances

Normalized

-Practical 40 Magnitude -- Ideal (dB) -40 -80 Phase (°) -180 -360 10⁶ 10³ 10⁴ 10⁵ Frequency (Hz)

Non-collocated Control (separate electrodes)

Collocated Control (same electrode)

Sampled Data System

Negative Feedback

Positive Feedback

Mode-Matching Summary

- >100x increased signal
- 100x power savings
- $\$ Fabrication tolerances, drift \rightarrow mismatch
 - Background calibration
 - Electrostatic tuning
- Sensitivity = f(Q, environment)
 - ➢ Force feedback
 - Stability → positive feedback

Sampling Noise

Closed Loop

Open Loop

Boxcar Sampler versus Charge Integrator

- $n_{\tau} = T_s / \tau_{amp}$ of charge integrator
- F = feedback factor of charge integrator
- Typical SNR improvement ~10dB
- 10x power savings!

System Block Diagram

Chip Photo

Chip Micrograph

Output Spectrum

Output Spectrum

Without calibration

- Noise Floor: 0.03°/s/√Hz
- Mismatch: ~400Hz (2.6%)

Output Spectrum

Without calibration

- Noise Floor: 0.03°/s/√Hz
- Mismatch: ~400Hz (2.6%)

With Calibration

- Noise Floor: 0.004°/s/√Hz
- Mismatch:
 << 50Hz (0.3%)

Capacitance resolution

• 1Hz bandwidth

0.3aF/12.5pF = 24ppb

Tuning Voltage Startup Transient

Results Summary

- Power dissipation: 1mW (excluding drive)
- Front-end power reduction:
 - Mode-matching: 100x
 - Boxcar sampling: 10x
- 1000x combined power savings!

Comparison to previous work

Reference	Power (mW)	Noise (°/sec/√Hz)	BW (Hz)	Tuning Time (sec)
[1]	30	0.05	20	-
[2]	13	1	40	-
[3]	31	0.05	36	-
[4]	6	-	0.2	140
This work	1	0.004	50	0.3

[1] Geen, JSSC 2002
[2] Petkov, ISSCC 2004
[3] Saukoski, ESSCIRC 2006
[4] Sharma, ISSCC 2007

Conclusions

- Power savings
 - Mechanical gain \rightarrow 100x reduction
 - Open-loop charge amplifier \rightarrow 10x reduction
 - Digital processing occurs minimum power overhead
- Techniques
 - Background calibrated mode matching
 → insensitive to process variations
 - Positive feedback
 - \rightarrow insensitive to parasitic modes

Acknowledgements

Christoph Lang & Vladimir Petkov

 Robert Bosch Corporation Gyroscope and financial support

